Inflammatory Response

- **Key Players**
 - Neutrophils: first to arrive
 - Main Job: Break down of tissue through respiratory burst
 - Macrophages: second to arrive
 - M1: Pro-inflammatory
 - Main Job: Phagocytose necrotic tissue and debris
 - M2: Anti-Inflammatory (resident macrophages)
 - Main Job: Aid in repair and regeneration
 - Cytokines
 - Both pro- and anti-inflammatory
 - Main job: Induce action of cells

Current treatment of muscle injury

- RICE and NSAID use

Mechanotransduction and manual therapy

- Influencing microenvironments to promote healing

Massage

- Basic Science

Learning Objectives

Following this workshop participants will be able to:

- Describe the important time points, and key players associated with the inflammatory process
- Describe the effects of early administration of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) following muscle injury
- Describe the concept of mechanotransduction and its application through manual therapies

Inflammatory Response

- Treatment of any injury requires a sound understanding of the inflammatory response
 - Incredibly diverse
 - Involves numerous players
 - Temporal in nature
P and E-Selectin activation allows for the adhesion of leukocytes, such as neutrophils, to the vascular wall. These leukocytes will make their way into the tissue via diapedesis.

Disruption of phospholipid bilayer of the cell membrane releases Arachidonic Acid (AA).

AA is not only a chemoattractant for neutrophils, but as little as 5 μM is a potent stimulator of respiratory burst as well.

Immune System in Action

Inflammatory Cell Recruitment

Pro-Inflammatory Cytokine Production

Anti-Inflammatory Cytokine Production

Current Treatment [Muscle Injuries]

- Muscle strains are one of the most common, and repetitive injuries, not only in the athletic population, but the working population as well.
- How are we treating these injuries? And why?
 - Rest
 - Ice
 - Compression
 - Elevation
 - NSAIDs

Role of NSAIDs

- Non-Steroidal Anti-Inflammatory Drugs are the most common utilized drug in the treatment of inflammatory conditions
 - Operate as non-selective Cyclo-oxygenase-1 (COX1)/Cyclo-oxygenase-2 (COX2) or Selective COX1 or COX2 inhibitors.
 - These drugs inhibit the action of the enzyme COX1 or COX2 from converting arachidonic acid into Prostaglandin
ROLE OF NSAIDS

- Disruption of the phospholipid bilayer of cell membranes, promotes the production of arachidonic acid
- Non-Selective versus Selective COX-Inhibitors inhibits action of COX enzymes

RECAP

- NSAIDS targeting COX-2 (COX-2 inhibitors):
 - Stop the synthesis of arachidonic acid to prostaglandin-E2 (PGE2)
 - Afferent nerves have specific receptors for PGE2, and are exited with high levels of PGE2 in the extracellular space
 - Excitatory signals travel up the nerve fiber to the soma located in the dorsal horn of the spinal cord
 - Intensity of the signal is interpreted as pain

NSAIDS AND MUSCLE REGENERATION

- Cross-sectional area of regenerating myofibers is decreased significantly (20-33%) by COX-2 inhibitors
 - Decrease is seen up to 3 weeks post injury
- COX-2 inhibitors appear to not affect the cross-sectional area of uninjured fibers
 - Suggesting no role of Prostaglandins on regular maintenance
- COX-2 appears to play a BIG role in EARLY regeneration of muscle after injury

THE PROBLEM

- Unfortunately NSAIDS have been shown to significantly affect the regeneration of muscle after injury
- Prostaglandins:
 - Contribute to various stages of myogenesis
 - Synthesized by regenerating muscle
 - Involved in myoblast proliferation, differentiation, and fusion
- In other words: they play a very important role in muscle growth.
- AND they are potent chemoattractants for inflammatory cells!!

SO WHAT CAN WE DO

- COX-3 is a third isoform of the cyclo-oxygenase group that is largely associated with the spinal cord in terms of:
 - Pain
 - Fever
- COX-3 does not play a role in inflammation
MECHANOTRANSDUCTION

- Mechanotransduction is the transformation of a mechanical stimulus into a chemical signal.
- Mechanical deformation of a tissue, or cell itself, results in a signaling cascade of events

IMPACT

- Massage is an ancient manual therapy technique dating back to as early as 2598 BC (Goats GC, 1994)
- Massage is sought after for the relief of:
 - Spasm (Herman 2012, Myklebust 2007)
 - Pain (Herman 2012, Myklebust 2007)
 - Swelling (Herman 2012, Myklebust 2007)
 - Disease Prevention (Hawk 2012)
 - Improved Immune Function (Hawk 2012)
 - Relaxation (Herman 2012, Myklebust 2007)

IMPACT

- Americans make more than 160 million visits to alternative medicine practitioners annually to seek relief of musculoskeletal weakness and pain
 - Spending an upwards of 11.9 billion dollars
 - Majority of which is OUT OF POCKET
 - $62 mean for each visit to a massage therapist

- Massage is one of the first manual therapies to be integrates alongside conventional medicine in hospitals around the US (Herman 2012, Myklebust 2007)
- Although it has recently gained a considerable presence in the health care system, the evidence in support for massage has remained mostly anecdotal.
Results showed an attenuation of the inflammatory response following massage administered to rabbit tibialis anterior muscle.

- Immediately post eccentric exercise
- 30 minutes
- 4 consecutive days

Butterfield et al. Medicine & Science in Sports & Exercise, 2009

Growing Evidence [Cell infiltration]

Growing Evidence [Timing]

Importance [Human work]

- Human biopsies exercised/massaged quadriceps showed an attenuation of pro-inflammatory cytokines (Crane 2012)
 - TNF-a, IL-6

Potential influence of massage

Waters-Banker et al. JAT (in press) 2013

Massage

- The question remains: What influence does massage have on the local tissue?
- And what influence does massage have on the inflammatory response?
- Food for thought: Can the proper mechanical compression of muscle tissue influence potentially beneficial immunomodulatory effects that promote macrophage phenotype change, and early transition into the repair and regeneration phase?
 - Application of load, and technique

Things to think about [Massage Clinical Application]

- Numerous indications and contraindications exist
 - Evidence to support?
- Environment: Acute or chronic?
 - Inflammation, damage, pain or…
 - Long standing injury
- What is the goal of the treatment?
 - Attenuate/modulate inflammation or…
 - Induce inflammation?
FINAL THOUGHTS

• The inflammatory response exists for a reason

• The goal is not to abolish it, but rather **attenuate/optimize** it in hopes to restrict uninhibited secondary hypoxic events

• Manual therapies, such as massage, may provide practitioners the opportunity to create an optimal environment for healing, promoting a quicker recovery of structure and function, absent of pharmaceuticals

THANK YOU!

• My committee:
 - Dr. Timothy Butterfield
 - Dr. Esther Dupont-Versteegden
 - Dr. Karyn Esser
 - Dr. Patrick Kitzman

• Lab Personnel:
 - Amy Cardale
 - Joyce Mula
 - Grace Walton
 - Janna Francisco
 - Jonah Lee

• Grants:
 - University of Kentucky NIH T32 pre-doctoral institutional training grant Physiology Department (Reid and Andrade)
 - NIH NCCAM RO1AT004922
 - University of Kentucky CHS pilot grant
 - NATA Foundation general research grant

Thank you!