

Pharmacotherapy Management in Patients with Extracorporeal Membrane Oxygenation

Ayesha Ather, PharmD, BCPS College of Pharmacy, Adjunct Assistant Professor University of Kentucky • I have no conflicts of interest to disclose.

Educational Need/Practice Gap

- Gap = Lack of treatment guidelines and published research often leave providers with no clear way to optimally treat patients
- Need = Our learners need strategies to manage patients on extracorporeal membrane oxygenation (ECMO)

Upon completion of this educational activity, you will be able to:

- 1. Identify alterations in pharmacokinetics (PK) associated with ECMO
- 2. Review dose adjustments and monitoring for common medications in critically ill patients on ECMO, including antimicrobials, sedatives, analgesics, and anticoagulation

- What is the desired change/result in practice resulting from this educational intervention?
 - As a result of the information/tools provided in this activity, learners should be better able to utilize appropriate pharmacologic therapies to manage patients on ECMO

Pharmacokinetic Alterations

Extracorporeal Membrane Oxygenation

Extracorporeal membrane oxygenation

- ECMO Circuit
 - Tubing type
 - Oxygenator membrane
 - Priming solution
 - Age of the circuit

Drug Factors

Protein Binding

Lipophilicity

Drug	Protein Binding	Octanol/Water Partition (log p)
Propofol	95-99%	4.0
Fentanyl	79-87%	3.9
Lorazepam	85-91%	3.5
Midazolam	97%	3.3
Dexmedetomidine	94%	3.3
Hydromorphone	8-19%	0.9
Morphine	20-35%	0.8

Lipophilicity

Analgesics and Sedatives

Analgesics and Sedatives

• Retrospective study of 29 patients on VA or VV ECMO

Drug	Average Daily Dose	Population Consideration
Midazolam	Increased by 18 mg (95% CI 8-29; p=0.001)	All
Morphine	Increased by 29 mg (95% CI 4-53; p=0.021)	Conserved renal function
Fentanyl	No difference (p= 0.94)	Renal dysfunction or renal replacement therapy

Analgesics and Sedation Considerations

- At ECMO initiation, use continuous infusions
- Set daily sedation goals and consider daily interruption of sedative
- After ECMO decannulation, re-evaluate doses of analgesics and sedatives
- Monitor for delirium or signs of withdrawal

Antimicrobial Dosing Considerations

- Therapeutic failure
- Potential emergence of resistant microorganisms
- Toxicity

β-Lactam Pharmacokinetics in ECMO

 Case control cohort: Total of 41 therapeutic drug monitoring (TDM) results

	Meropenem (n=27)		Piperacillin/tazobactam (n=14)	
	ECMO	Control	ECMO	Control
Volume of Distribution <i>(L/kg)</i>	0.46 (0.26–0.92)	0.60 (0.42–0.90)	0.33 (0.26–0.46)	0.31 (0.21–0.41)
Elimination half life (h)	3.0 (2.1–4.8)	2.9 (2.4–3.7)	2.0 (1.1–4.2)	1.6 (1.0–4.7)
Total drug clearance (mL/min)	125 (63–198)	144 (97–218)	156 (91–213)	134 (47–179)

β-Lactam Pharmacokinetics in ECMO

Dose Adjustments for Select Antibiotics

Drug	Protein Binding	Log p	Volume of Distribution	Expected Effect	Dose Adjustment
Ceftriaxone	85-90%	-0.01	5.78–13.5 L	Moderate sequestration	Not required
Vancomycin	50%	-4.4	28–70 L	Minimal sequestration	Not required
Levofloxacin	24–38%	0.65	88.9 L	Minimal to moderate sequestration	Not required
Gentamicin/ Tobramycin/ Amikacin	< 30%	< 0.0	14–21 L	Minimal sequestration	Not required
Voriconazole	58%	2.56	322 L	Moderate to high sequestration	Yes

Antimicrobial Dosing Considerations

- PK data in adult patients on ECMO are sparse
- Consider loading dose for drugs with moderate to high sequestration
- Dose guided by therapeutic drug monitoring when applicable
- Monitor for signs of infections

Bleeding and Thrombosis Complication

- Meta-analysis: 12 studies (1763) patients
 - Any bleeding (33%)
 - Hemolysis (18%)
 - Venous thrombosis (10%)
 - Gastrointestinal bleeding (7%)
 - Disseminated intravascular coagulation (5%)

Hemostasis Alterations During ECMO

Coagulation Cascade

http://mrcpandme.blogspot.com/2010/09/mrcp-revision-battle-142-clotting.html

Drug	Advantages	Disadvantages
Unfractionated heparin	 Well known Easy to antagonize (protamine) Easy to monitor (aPTT/ACT) 	 Non-linear, variable effect Dependent on AT activity Possible HIT induction
Low-molecular weight heparin	Easy to administerLower risk of HIT induction	 Accumulation in renal impairment Can only be partially antagonized Not easy to monitor (anti-Xa levels)
Direct thrombin inhibitors	 Independent of AT activity Quick onset No HIT induction Bivalirudin: cleared renally Argatroban: cleared hepatically 	 No antagonist Interference with INR aPTT and coagulopathy

Guidelines

- Heparin bolus (50-100 units/kg) at time of cannulation, continuous infusion during ECLS
- Monitor ACT, aPTT, or anti-Xa

"These guidelines describe useful and safe practice, but these are not necessarily consensus recommendations. These guidelines are not intended as a standard of care, and are revised at regular intervals as new information, devices, medications, and techniques become available."

Practice Survey of 121 ECMO Centers

<u>Goals</u>

ACT 180-200 sec Median antithrombin 70% Anti-Xa 0.3-0.7 IU/mL

Transfusion Triggers

Platelets <100k Fibrinogen <145mg/dL

Monitoring Frequency

APTT q6-8h CBC q6-8h Fibrinogen >12h Free hemoglobin >12h Antithrombin q13-24h Anti-Xa q13-24h

Key Factors	ACT	aPTT	Anti-Xa
Availability	Point of care	Central Lab	Central Lab
Results	Results may be affected (prolonged) by: •Thrombocytopenia •Platelet dysfunction •Hemodilution	Not affected by platelet numbers or function Hepatic congestion	Least affected by physiologic alterations Direct assessment of anticoagulant effect of heparin
Turn around	Rapid (minutes)	Dependent on lab (30 min to hours)	Dependent on lab (30 min to hours)
Typical goal	160 – 200 for ECMO	1.5 – 3 x baseline (typically 40-70 range)	0.3 – 0.7 IU/mL 0.25 – 0.5 IU/mL

Anticoagulation for ECMO at UK HealthCare

- MCS Heparin Protocol
 - Full-Dose → Higher therapeutic targets
 - Low-Dose → Lower therapeutic targets
 - Utilizes both anti-Xa and aPTT concurrently
- ACT protocol
- Fixed dose heparin protocol

Bleeding Complications

- Contributing Factors
 - Systemic anticoagulation
 - Thrombocytopenia
 - Platelet dysfunction
 - Coagulopathy secondary to primary disease and/or liver dysfunction
- Prevention
 - Optimize anticoagulation (avoid over anticoagulation)
 - Maintain platelets
 - Caution with suctioning and placement of lines and catheters
 - Prepare for invasive procedures if necessary

Therapeutic Options

- Administer antidotes/reversal agents when appropriate
- Blood products
 - Red blood cells (RBCs)
 - Platelets Fresh frozen plasma (FFP)
 - Cryoprecipitate
- Pharmacologic agents
 - Local hemostatic agents/sealants
 - Vitamin K
 - Antifibrinolytics
 - Protamine
 - Desmopressin (DDAVP)
 - Recombinant activated factor VII (rFVIIa)
 - Prothrombin Complex Concentrates (PCCs)

Anticoagulation Considerations

- Most data in pediatric population
- Center specific protocols
- Heparin drug of choice for now
- Variable monitoring strategies
- UK primarily uses heparin; aPTT and Anti-Xa

Pharmacotherapy Management in Patients with Extracorporeal Membrane Oxygenation

Ayesha Ather, PharmD, BCPS College of Pharmacy, Adjunct Assistant Professor University of Kentucky