Sickle Cell Disease in Athletes

Objectives

- Be familiar with the classification, diagnosis, and complications of sickle cell disease/trait.
- Be equipped to guide the management of sickle cell disease/trait in athletes.

Case Study

- In January, a 22 y/o collegiate football athlete with known sickle cell disease competed in morning conditioning drills at 6 am.
- He developed left-sided arm and upper leg pain during breakfast and presented to Student Health.
Case Study

• EMS was contacted immediately and the athlete was transported by ambulance to the nearest Emergency Department due to concern for sickle cell crisis.

![EMS vehicle]

Case Study

• Intravenous fluid resuscitation was initiated in the ED and hydromorphone was given as needed for pain.
• Admitted to the hospital for further work-up and management.

![Emergency Department]

History

• Past Medical History
 — Sickle cell disease
 • Initial crisis at 5 years old; most recent crisis 1 year prior
• Surgical History
 — None
• Medications
 — Folic acid, Multivitamin
• Allergies
 — None
• Family History
 — Father and mother in good health
• Social History
 — Student athlete originally from Amsterdam, Netherlands
 — No smoking history or illicit drug use
Physical Examination

- VITALS: T 97.8, P 96, RR 20, BP 126/80, spO2 99%
- GENERAL: Well-developed. No acute distress.
- HEART: Regular rate and rhythm, no murmurs.
- LUNGS: Clear to auscultation bilaterally.
- ABDOMEN: Normal bowel sounds, non-tender.
- SHOULDERS: Tender to palpation over distal biceps and triceps, pain with resisted elbow flexion/extension. Otherwise, normal.
- HIPS: Tender to palpation over greater trochanter and lateral quadriceps. Otherwise, normal.

Differential Diagnosis

- Complication of sickle cell disease
 - Sickle cell pain crisis
 - Exertional rhabdomyolysis
 - Spleenic infarct
- Unrelated musculoskeletal issue
 - Muscle strain/contusion
- Medical issue
 - Referred pain (angina, pulmonary embolus)

Labs on admission

- WBC 11 (87% neutrophils)
- Platelets 182
- **Hemoglobin 11.6**
- **Hematocrit 34.2**
- **Reticulocyte count 4.1**
- CMP within normal limits
- Cardiac enzymes negative (CK 228) (normal <308)
- ABG within normal limits (lactate 0.33) (nl <1.25)
- Urinalysis and toxicology screen negative
Additional diagnostics

• Imaging
 – Chest x-ray (2 views): No acute process
 – CT Chest: Bibasilar atelectasis
 – Shoulder films (2 views): Unremarkable
 – Pelvis films (2 views): Unremarkable
 – Repeat CXR (1 view): Mild pulmonary edema
• Cardiac work-up
 – Electrocardiogram: Normal sinus rhythm
 – Transthoracic echocardiogram: Unremarkable

Additional labs

• Hemoglobin electrophoresis
 – Hemoglobin S: 49.8%
 – Hemoglobin C: 43.9%
 – Hemoglobin A2: 4.9%
 – Hemoglobin F: 1.4%
• Diagnosis: Hemoglobin SC disease

Management

• Sickle cell pain crisis
 – 5-day hospital stay for hydration and pain control
 • IV fluid resuscitation
 • Patient-controlled analgesia (hydromorphone)
 – Transitioned to Celecoxib, cyclobenzaprine, and oxycodone for pain on discharge
 – Developed cough during admission—discharged on guaifenesin and cefdinir
 – Follow-up arranged in Hematology clinic
Return to Play

- On discharge, the athlete was instructed to rest until complete resolution of symptoms
- Two weeks later, he continued to have a cough and was placed on additional antibiotics
- Two weeks later, the cough resolved and the athlete was cleared to gradually progress activities, starting with light conditioning
- He progressed over the course of four weeks to full participation.

Return to Play

- Two weeks later, he decided to retire from football and move back home to Amsterdam
- The athlete cited difficulty with spring workouts, expense of school, and homesickness as major factors in this decision

Questions

- What is the difference between sickle cell disease (SCD) and sickle cell trait (SCT)?
- What can go wrong with these athletes?
- How are athletes with SCD or SCT identified?
- What prevention strategies are in place?
Sickle Cell Disease

• Terminology
• Epidemiology
• Complications
• Screening/Diagnosis
• Management
• Return to play

Sickle Cell Disease

• Normal adult hemoglobin
 – $2\alpha + 2\beta = \text{Hb A tetramer}$
• Hemoglobin S
 – Mutation in the beta-globin chain → Poorly soluble hemoglobin, which forms long, inflexible chains when deoxygenated
 – Inflexible hemoglobin chains → Stiff & sticky (sickle) red blood cells
 – Sickle cells logjam in small vessels → Compromise blood supply

Question

• What is the difference between SCD and SCT?
Question

• What is the difference between SCD and SCT?

Genotype

• Sickle cell disease
 – All conditions associated with sickling
• Sickle cell anemia (Hb SS)
 – Homozygous for hemoglobin S
• Hemoglobin SC disease (Hb SC)
 – Hemoglobin S and hemoglobin C (typically 50:50)
• Sickle cell trait (Hb AS)
 – Hemoglobin A and hemoglobin S (typically 60:40)

Phenotype

• Sickle cell anemia (SCA)
 – Numerous complications; rarely compete in sports
 • Most common complication is pain crisis (0.8 per year)
 • Anemia, infection, stroke, CVD, renal disease, leg ulcers, priapism
 • Life expectancy: 45 years
 – No reported cases in NCAA athletes
• Hemoglobin SC disease
 – Less severe than SCA; more severe than SCT
 • Most common complication is pain crisis (0.4 per year)
 • At risk for same complications above—much less common
 • Life expectancy: 64 years
 – Four reported cases in NCAA athletes
 – All eventually retired due to complications
• Sickle cell trait
 – “Not a disease;” athletes compete in sports with few complications
 – Roughly 2,000 current NCAA athletes
Epidemiology

• Sickle cell gene is most common in Africa, India, the Middle East, and Mediterranean countries
 – Malarial distribution
 – Frequency of sickle cell gene: 4%
 – SCA = 0.2%; SCT = 8%
• SCT: 300 million people worldwide, 3 million U.S.
 – 8-10% of African Americans
 – 0.5% of Hispanics
 – 0.2% of Whites
• SCT does not alter life expectancy

Question

• What can go wrong with these athletes?

Complications of SCT

• Gross hematuria
• Venous thromboembolism
• Splenic infarction
• Exertional collapse
Gross hematuria

- Results from sickling deep in the renal medulla
 - Initial therapy is relative rest and hydration
 - Typically resolves within two weeks

Venous thromboembolism

- Studies conflict on the relative risk of VTE in athletes with SCT compared to those without
 - Range from 1.5-4 times relative risk
 - Monitor athletes with immobilizing injuries for deep venous thrombosis
 - Especially those taking oral contraceptives

Splenic infarction

- Hypoxic splenic sickling → infarct, typically at altitude
 - Ryan Clark
 - Splenic infarction in Denver in 2007
 - Splenectomy and cholecystectomy were done
 - Out for the rest of the season
 - Held out of games in Denver thereafter
 - Most cases occur with mild to moderate activity
 - Consider oxygen for long flights/road trips to altitude
 - One case series documented 30 of 50 cases occurred in non-black persons
 - Think of SCT splenic infarction in anyone who develops left lower chest pain while at altitude
 - Diagnosed early, it responds to conservative therapy, including descent
Exertional collapse

• NCAA Division-1 football
 – 16 deaths from 2000-2010
 • All from conditioning; zero from practice/play
 • 10 (63%) attributed to exertional sickling
 – SCT independent risk factor
 • Black athletes with SCT 37 times more likely to experience exertional death than those without SCT
• Military recruits
 – SCT independent risk factor
 • Black recruits with SCT 30 times more likely to experience exertional death than those without SCT

Exertional collapse

• Perfect storm of undue exercise intensity, sustained for at least a few minutes, and a heroic effort beyond the physical limits of an athlete on any given day.
 – Intense exertion → Hypoxemia → Sickling
 – Sickle cells → Muscular ischemia → Rhabdomyolysis
• Deaths are largely due to rhabdomyolysis
 – Acute renal failure
 – Hyperkalemia
 – Fatal arrhythmias

Exertional collapse

• Dale Lloyd
 – Freshman football athlete
 – Collapsed after a conditioning run
 • 16 successive 100 yard sprints
 • Lagged behind on final sprints
 • Shortness of breath and weakness after work-out
 • Initially alert; lethargic within 10 minutes
 – Received IV fluids in training room, then lost consciousness and was rushed to the hospital
 – Profound lactic acidosis and rhabdomyolysis
 – Died 15 hours after collapse from hyperkalemia and fatal arrhythmia
Exertional collapse

• Typical Presentation
 – Unlike cardiac arrest
 • Able to talk at first
 – Unlike heat illness
 • Slumps to the ground
 • Weakness > Pain
 • Muscles “normal”—not tight or cramping
 • Normal temperature
 – Unlike asthma
 • Tachypnea due to lactic acidosis; no wheezing

Question

• How are athletes with SCD or SCT identified?

Screening/Diagnosis

• NCAA Mandate
 – All NCAA athletes are required to be screened
 • May provide records or opt out/sign a release
• Tests
 – Solubility test (Sickledex)
 • 98.4 - 98.9% sensitive, 100% specific
 • If positive, proceed to confirmatory test
 – Hemoglobin electrophoresis
 • Gold standard
Questions

• What prevention strategies are in place?

Prevention

• Athletes with SCT should train *consciously*...
 – Set their own pace
 – Engage in a slow and gradual preseason conditioning regimen
 – Build up slowly while training, allowing adequate rest and recovery between repetitions
 – Be excused from performance tests such as serial sprints or timed mile runs, avoiding all-out exertion beyond 2-3 minutes without a break
 – Access supplemental oxygen at altitude as needed

Prevention

• Athletes with SCT should train *cautiously*...
 – Stay well hydrated at all times, especially in hot and humid conditions
 – Maintain proper asthma management
 – Refrain from extreme exercise during acute illness
 – Stop activity immediately upon struggling or experiencing symptoms such as muscle pain, weakness, undue fatigue, or breathlessness
Management

• In the event of a sickling collapse...
 – Be prepared with an Emergency Action Plan
 – Check vital signs
 – Administer oxygen
 – Cool the athlete if necessary
 – If obtunded, call 911, attach AED, start IV, and transport the athlete to the ED
 – Tell receiving hospital to expect rhabdomyolysis

Return to play

• Limited evidence supports recommendations
 – Once the athlete is asymptomatic at rest and has normal end-organ function, re-visit precautions for safe participation.
 – If the athlete desires to resume activity, allow a gradual supervised return to activity as tolerated.
Conclusions

• What is the difference between SCD and SCT?
 – SCT is the most common form of SCD we will encounter (300 million worldwide; 3 million in the U.S.)

• What can go wrong with these athletes?
 – Most common complication is exertional rhabdomyolysis

• How are athletes with SCD or SCT identified?
 – Screening is mandatory at all NCAA levels
 – If positive, confirmatory testing is required

• What prevention strategies are in place?
 – Educate athletes to train consciously and cautiously
 – Be prepared with Emergency Action Plan for complications

References

7. UpToDate. Variant sickle cell syndromes.

Questions?