Evaluation of Lumbopelvic/Core Stability
Ryan McGuire PT DPT MS OCS CSCS
University of Kentucky Sports Physical Therapy

Overview and Objectives
• Focus is on examination/assessment of lumbopelvic/core stability
• Define core instability, stability
• Examine and assess the local and global stabilization systems
• Evidence based exam for clinical signs of instability
• Determine if stabilization treatment necessary/beneficial

What is Core Instability?
• Previously described as ligamentous laxity that produced excessive movements in an intervertebral joint at endrange

Radiographic Instability
• Age <37 years
• Total extension > 26 degrees
• Any hypermobility of the lumbar spine
• Lack of hypomobility of the lumbar spine*
• Lumbar flexion >53 degrees*
 • +L.R. =12.8; -L.R. =.72
 • Fritz et al. Eur Spine J 2005

Clinical Instability: Panjabi
• Neutral zone of Z joint stability: “a measure of spinal laxity in the vicinity of the neutral position.” Abnormal increase in size of the neutral zone leads to pain secondary to strain
• Inability of the spine under physiological loads to maintain its normal pattern of displacement to avoid neurological damage or irritation, development of deformity, and pain

Clinical Instability: Panjabi’s Model of Core Stability
Goal: Maintain/recover neutral zone after trunk perturbation during activity both anticipatory and reflexively reactive
Stability of the SI joint

• Closed pack position: sacral flexion and posterior innominate rotation
• Max ligamentous tension and joint congruency
• Facilitates maximum load bearing and load transfer
• Combination of this and muscular control creates a self locking mechanism

Local Stabilization System

• Pelvic Floor
• Transversus Abdominus
• Multifidus
 - rapid atrophy within 24 hrs of pain onset/recovery not automatic
 - Multifidus fat infiltration and atrophy strongly associated with LBP
 - Delayed firing in deep core with arm movements with h/o LBP
 - Higher recurrence rates of LBP in a control vs stab group at 2-3yr f/u.

Local Stabilization System

• Diaphragm
• Psoas
• Internal Oblique
• Rotatores, Musculi Interspinalis, Intertransversarii mediales and laterals

Global Stabilization System

• Long erector spinae
• Rectus Abdominus
• External Oblique
• Longissimus thoracis

Hip Musculature Contributions

• Gluteus maximus
 - stab pelvis/trunk through tension in thoracolumbar fascia
• Gluteus medius
 - frontal plane stability
• Hip Ers:
 - precise eccentric control with gait to control IR moments
• Assist with SI locking for load transfer

Clinical Signs of Instability

• Lumbar CPR: Stability Classification
 1. Age < 40
 2. Aberrant movement present
 3. SLR > 91 average
 4. (+) Prone instability test
 - K= .80, ICC.94
 - responding to stab program: +LR 1.7, -LR .48
 5. FABQ PA>8
 6. Segmental hypermobility
 ≥3 findings = +LR 18.8
Clinical Signs of Instability
1. Lumbopelvic rhythm
2. Pattern of SB/rotation toward paraspinal bulk
3. Passive hip ROM
4. Active leg raise(sagittal)
5. Active leg raise(frontal)
6. Bent knee fall out

3/6 + findings used as criteria for stab training with sig improvements in pre-post testing pain and disability¹⁰,¹¹

Subjective Examination
• Age <40, FABQ PA > 8
• H/o chronic, recurrent LBP with frequent episodes of acute attacks
• Inconsistent symptoms
• C/o giving away, catching, locking episodes
• Manipulation provides short term relief only
• Poor outcomes with general exercise

Subjective Examination
• Increased symptoms with:
 -sustained wbing positions
 -static positions
 -sharp pain with quick movements
• Decreased symptoms with:
 -manipulation-short term
 -NWB or external support

Objective Examination: Inspection
• Paraspinal fullness greater then 1/2in on one side
 -pain and limited SB toward and increased rotation towards bulk
• Reversal/Alteration of lumbopelvic rhythm
• Aberrant movement
 +(++) Gowers sign
 -hinging, fulcruming

Objective Examination: Inspection
• Single leg squat test (repetitive)
• Compression test
 -superior to inferior force applied to spine through shoulders
 -look for points of hinging
• Decreased pain with deep contraction during provocative movement
 (ex: SLR, Fabers, quadrant)

Objective Examination: AROM
• Forward flexion test
 -standing flexion, PSIS best palpated at endrange
 -cranial PsIS on painful side indicates fixation
 -cranial PsIS on nonpainful side indicates hypermobility of involved side
 -K= .32-.55

Winkel et al. 1997
Objective Examination: AROM

- **Stork Test**
 - resting standing position
 - palpate PSIS on stance leg and sacral base/L5, patient completes uninvolved hip flexion
 - PSIS should move posterior and slightly laterally on stance leg
 - positive test: PSIS moving ant-sup.
 - denotes sacral unlocking and altered load transfer

(+) Stork Test with Unlocking

(-) Stork Test with Sacral Locking

Objective Examination: AROM/PROM

- **PROM hip flexion**
 - positive if pain before 120 flexion
- **SLR for average ROM:** >91
- Motion control testing
 - ASLR, BKFO
 - SL SLR
 - Prone SLR
 - With and without compression

Objective Examination: AROM/Motion Control Testing

- **Active SLR**
 - supine, complete active SLR 8 inches from table without compression
 - assess: stability of pelvis and difficulty/provocation for lifting
 - reliability: ICC .83
 - validity: ID post pelvic pain since pregnancy sn .87, sp .94
 - altered kinematics of diaphragm and pelvic floor present with + test

Objective Examination: AROM/Motion Control Testing

- **Active SLR**
 - retest adding compression: (+) is dec difficulty/pain
 - anterior ilium: pelvic floor and TA
 - posterior ilium: sacral multifidus
 - pubic ramus: hip add and/or rectus abdominus
 - thorax to pelvis: obliques
Objective Examination: AROM/Motion Control Testing

- Bent knee fall out
 - supine hooklying
 - eccentric lowering into hip abduction/ER
 - positive test: pelvic rotation during first 50% motion
 - if symptoms increased, pelvic stab. should improve pain
 - reliability: K=.38-.60

Sidelying SLR Poor Form Video Clip

Objective Examination: AROM/Motion Control Testing

- Sidelying SLR
 - sidelying position with bottom leg slightly flexed, top leg extended
 - test is hip abduction with 10 degrees hip extension and slight ER
 - look for substitutions: flexing hip and rolling or hiking of pelvis early in motion

Objective Examination: AROM/Motion Control Testing

- Prone SLR
 - prone position, lift leg 8-10 inches off table
 - assess neutral spine and firing pattern: TA, ipsilateral glut/H5, contralateral multifidus f/b ipsilateral, contralateral ES f/b ipsilateral
 - k=.72-.76 for agreement on deviation in frontal, transverse, sagittal plane
 - gluteus maximus time to contract reduced with compression

Prone SLR Bad Form Video Clip
Objective Examination: PROM

- Lumbar and SI PA glides
 - reliability: poor agreement K=.04 with MRI
 - ID of osseous structures K=.53
 - motion assessment K=.17
 - pain assessment K=.42
 - determining hypomobility K=.71
 - determining hypermobility K=.29

Objective Examination: PROM

- Prone Instability Test
 - prone with hips over edge of plinth, feet on floor.
 - 2 parts: PA glide, repeat PA glide with feet off floor
 - positive if second test less painful
 - reliability: K=.80, ICC =.94
 - validity: likelihood of pt responding to stab. program
 - (+)LR= 1.7, -LR .48

Objective Examination: PROM

- Prone Instability Test Part I and II

Objective Examination: PROM

- SI provocation testing cluster
 - immediate pain=inflammation, systemic condition, hypermobility
 - delayed pain = stiffness, up to 2 min hold
Objective Examination: Motor Control and MMT

• Assess the local system
 - for volitional activation and endurance
 - if volitional control noted then check for reflexive co-contraction

Objective Examination: Motor Control and MMT

• Pelvic Floor
 - pt in hooklying palpate for activation with ulnar aspect of hand
 - cue for kegels, stopping flow of urine

Objective Examination: Motor Control and MMT

• Transversus Abdominus
 - pt in prone, stabilizer set to 70mmHg
 - inferior edge of stabilizer at level of ASISs
 - drawing in with relaxed normal breathing
 - stop test if inability to hold x10 sec for 10 reps at a given level
 - goal ≤ 64mmHg (range 68-60mmHg)

Objective Examination: Motor Control and MMT

• Multifidus
 - same position as TA test, palpate in the gutter just adjacent to spinous process (check different levels)
 - cues include: swelling, attempt to extend the back without moving, cone concept
 - if they cannot activate...try unilateral isometric HS activation near full extension engage

Objective Examination: Motor Control and MMT

• Check the Reflex
 - if volitional contraction noted, check pelvic floor-TA and TA-multifidus reflexive activation

Objective Examination: Motor Control and MMT

• Assess the global system***athletes
 - trunk endurance testing (McGill)
 - sit up sustained, Biering-Sorensen, side bridge, compare to norms and ratios
Objective Examination: Motor Control and MMT

- Hip adductor/abductor MMT
 - normal testing method
 - disproportionate weakness of adductors to abductors indicative of hypermobility (irritation/displacement) of pubic symphysis
- Gluteus maximus and hip ER MMT

References

