Urologic Stone Disease Diagnosis and Treatment

Stephen E. Strup MD
William Farish Professor and Chief of Urology
Director of Minimally Invasive Urologic Surgery
University of Kentucky

Urologic Stone Disease

Ureteral calculus

Obstruction of flow

I will not cut, even for the stone, but leave such procedures to the practitioners of the craft

Hippocrates

Urologic Stone Disease

• Epidemiology
• Classification
• Presentation
• Imaging
• Treatment
• Prevention

Urologic Stone Disease: Epidemiology

• Prevalence = 2-3% will have urinary tract stone disease
• Nephrolithiasis incidence as high as 12% in industrialized countries
• Recurrence rates for first time stone formers:
 – 10% first year, 35% at 5 yrs, 50% at 10 yrs
• Men > women
 – Risk of caucasian male getting a stone by age 70 is approximately 1 in 8.
Urologic Stone Disease: Epidemiology

• Peak age of incidence = 20’s to 40’s
• Male / Female ratio = 3/1
 – Children: ratio is equal
• Geography important..."Stone Belt"
 – Increased in mountains, desert, and tropics
 – Southeast (calcium oxylate stones)
 – East coast (uric acid stones)
• Season important
 – Higher in summer months

• Water intake
 – How much you drink
 • “the solution to pollution is dilution”
 – What kind of water you drink
 • Presence of excess minerals (sodium carbonate in hard water) or lack of them (zinc)
• Diet (multifactorial)
• Occupation
 – Sedentary jobs higher risk

Urologic Stone Disease: Stone composition

• Calcium Oxylate
 – Most common kind of stone
 – Most of these patients have hypercalciuria
 – Radio-opaque
• Uric Acid
 – Low urine pH (<5.5)
 – ?gout...increased uric acid load, pH more important
 – Inflammatory bowel disease (dehydration, bicarb loss)
 – Radiolucent

• Infection stones (Struvite)
 – Caused by UTI with urease-producing bacteria (ie Proteus, Klebsiella, Pseudomonas)
 – May grow quite large (Staghorn calculus)
 – Tend to harbor bacteria
 – Radio-opaque
• Cystine Stones
 – Autosomal recessive disorder
 – Cystinuria (cystine poorly soluble)
 – Dense stones, radio-opaque

• Medication stones
 – Triamterine (Dyazide, Maxide)
 – Laxative abuse (ammonium acid urate stones)
 – HIV + patients on triple drug therapy
 • Indinavir crystals
 • Radiolucent (X-ray and CT)

• Renal Colic
 – Abrupt onset
 – Affects patient whether sedentary or active
 – Radiating: flank to groin
 – Associated with bladder irritation if distal
 – Nausea, emesis common
 – Ileus, diarrhea can be present
Urologic Stone Disease: Presentation

- **Urinalysis**
 - Microscopic or gross hematuria (90%)
 - ? Infection
 - Elevates urgency of management
 - May indicate etiology of stone
 - pH important
 - crystals

Urologic Stone Disease: Imaging

- **Plain Abdominal film**
 - Stone visualization variable (bowels, bones, etc)
 - Excellent way to follow radio-opaque stones
 - Can be fooled by calcifications outside of the urinary system

- **Intravenous Urogram (IVP)**
 - Valuable to outline anatomy, stone location, and obstruction
 - Requires good bowel prep for optimal films
 - If significant obstruction, may not identify point of obstruction

- **Renal Ultrasound**
 - Stones will "shadow", but small ones may be missed
 - Renal calculi well seen, ureteral calculi difficult to see
 - Can document Hydronephrosis

- **Computed Tomography**
 - Becoming the standard (non-contrast helical CT)
 - Cost similar to IVP
 - Rapid assessment
 - Location/size of stone
 - Secondary signs of obstruction (stranding, hydronephrosis)
Urologic Stone Disease

- Epidemiology
- Classification
- Presentation
- Imaging
- Treatment
- Prevention

Treatment Options for Urologic Stones

- Observation
- Chemo-dissolution
- Extracorporeal Lithotripsy (ESWL)
- Percutaneous stone surgery
- Ureteroscopy with laser lithotripsy
- Open stone surgery

Urologic Stone Disease: Treatment

- What do the treatment of stone disease and the sale of real-estate have in common?

- LOCATION, LOCATION, LOCATION

Observation

- Successful passage dependent on size
 - <4mm – approx. 90% pass
 - 4 – 8mm – approx. 40% pass
 - >8mm – less than 10% pass
- Can wait up to 6 weeks
- Monitor for infection, stone movement

Chemo-dissolution

- Sounds great, but……
- Can work for Uric acid calculi
 - Raise urine pH >6
 - Sodium Bicarbonate, Urocit-K, Potassium Citrate
- For calcium containing stones
 - No safe, effective agents

ESWL

- Utilizes focused shock waves generated by various means to fragment the stone
- Ideal for kidney stones
- Lower pole stones, large stones, ureteral stones, poorly visualized stones are problematic
- Must then pass the fragments
Percutaneous Stone surgery

- Percutaneous access to the kidney through the flank
- Ideal for large stone burden
- Utilize ultrasound/aspiration, laser, pneumatic impacting devices to fragment and remove stone
- Can render patients with large stone burdens “stone free” in one or two procedures

Ureteroscopy

- Access through existing channels (bladder and ureter)
- Utilizes small diameter scopes to visualize, fragment, and remove stones
- Ideal for ureteral calculi, smaller renal calculi

Ureteroscopy “Toys”

- Graspers
- Graspers and baskets
- Lasers

Ureteroscopy: Semi-rigid ureteroscope

Factors to Consider

- Size of the stone
- Location of the stone
 - Kidney (upper, middle, lower)
 - Ureter (proximal vs. distal)
- Composition of the stone
 - “hard vs. soft”
- Previous history
 - Previously passed stones
- Presence of infection
 - emergency
Stone Treatment Factors

- **Size**
 - **<4mm**
 - Kidney – Observe vs. ESWL
 - Ureter – Observe, treat if colic or not moving
 - **4 – 8mm**
 - Kidney – ESWL
 - Ureter – Treat, ureteroscopy vs ESWL
 - **8 – 15mm**
 - Kidney – ESWL
 - **Over 15mm or complex stone**
 - Kidney – Percutaneous removal

Stone Treatment Factors

- **Location**
 - **Kidney**
 - ESWL for stones less than 1.5 – 2cm
 - Percutaneous approach for large or lower pole stones
 - **Ureter**
 - Ureteroscopy for any location
 - Flexible ureteroscope for upper ureter
 - Semi-rigid ureteroscope for lower/mid ureter
 - ESWL for upper ureteral stones that are well seen

Right Mid-ureteral calculus: Stent in place

Holmium laser fiber on a ureteral calculus

Calculus has been partially fragmented

Patients with Residual Calculi: Size of Original Stone

<table>
<thead>
<tr>
<th>Size</th>
<th>% of Original Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><1mm</td>
<td>0</td>
</tr>
<tr>
<td>1-5mm</td>
<td>10</td>
</tr>
<tr>
<td>6-10mm</td>
<td>20</td>
</tr>
<tr>
<td>11-20mm</td>
<td>30</td>
</tr>
<tr>
<td>>20mm</td>
<td>50</td>
</tr>
</tbody>
</table>
ESWL Treatment of Upper Ureteral Calculi

<table>
<thead>
<tr>
<th>Litho</th>
<th>Stone Free (%) 3 mo</th>
<th>Proximal</th>
<th>Mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM-3</td>
<td>91</td>
<td>91.2</td>
<td></td>
</tr>
<tr>
<td>MFL-5000</td>
<td>81.3</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>HM-4 & MPL-9000</td>
<td>68.5</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Piezolith & LTO2</td>
<td>70.2</td>
<td>73.4</td>
<td></td>
</tr>
<tr>
<td>Lithostar</td>
<td>82.4</td>
<td>81.1</td>
<td></td>
</tr>
<tr>
<td>Modulith</td>
<td>81.0</td>
<td>80.0</td>
<td></td>
</tr>
</tbody>
</table>

Ureteroscopy

Distal Ureteral Calculi: Success of Treatment

<table>
<thead>
<tr>
<th>Period</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990 - 1995</td>
<td>91.2%</td>
</tr>
<tr>
<td>1996 - 2001</td>
<td>96.4%</td>
</tr>
</tbody>
</table>

Urologic Stone Disease: Follow-up

- Stone Analysis
- KUB and Renal U/S
 - Rule out residual fragments, silent hydronephrosis, new stones
- Metabolic evaluation
 - Recurrent stone formers
 - Young patients with positive family history of stones
 - Bilateral stones

Metabolic Stone Work up

- Complete Serum metabolic panel
 - Calcium, Uric acid, Creat., Bicarbonate
- U/A
- 24 hour urine collection
 - Sodium, calcium, Phosphorus, Oxylate, Uric acid, Citrate, magnesium
 - Volume, urine pH

Metabolic Stone Work up: Common Problems

- Low Urine volume (<2 liters/day)
 - Increased super saturation of Calcium oxylate and or uric acid
 - Treatment: drink more water!
- High urine sodium (another Diet Coke please)
 - Increases urine calcium
 - Treatment: Decrease dietary sodium

Metabolic Stone Work up: Common Problems

- Increased urinary calcium
 - Hyperparathyroidism
 - Treat primary disease
 - Renal leak (high fasting urine calcium)
 - Thiazide diuretic
 - Hyper absorption (normal fasting urine calcium)
 - Dietary restriction of calcium
Metabolic Stone Work up: Common Problems

- **Low Urine Citrate**
 - Citrate is a stone “inhibitor”
 - Lowered with thiazide diuretics
 - Treatment: Potassium citrate or Urocit-K, alternative is “lemonade therapy”
 - Lemons are good source of citrate with the least calcium and sodium

- **High urinary oxylate**
 - Can result from calcium restriction
 - Treatment: Adequate calcium, dietary restriction

Metabolic Stone Work up: Common Problems

- **Dieting**
 - “Atkins” diet or similar…low carb, high protein
 - Urine gets acidified (ash)
 - Uric acid load up
 - Obesity is risk factor for stones independently
 - Stone risk increased
 - Counterbalanced by hydration and possibly alkalization (potassium citrate)

Urologic Stone Disease: Summary

- Common problem with classic presentation (colic)
- Diagnosis commonly made with spiral CT
- Treatment based on size and location of the stone
 - Ureteroscopy, ESWL, percutaneous
- Metabolic evaluation and treatment recommended for recurrent stone formers or those at risk

Thank You