Acute Stroke Treatment—Update for 2008

Michael R. Dobbs, MD
Assistant Professor of Neurology, Preventive Medicine, and Graduate Center for Toxicology
University of Kentucky College of Medicine

The Stroke Pandemic

Stroke Subtypes

- Hemorrhagic 15%
 - Subarachnoid
 - Intraparenchymal
- Other 4%
- Cryptogenic 26%
- Atherosclerotic 17%
- Cardioembolic 17%
- Lacunar 21%
- Ischemic 85%

Impact of Stroke in the USA

- Stroke Survivors
 - Return to normal 10%
 - Hemiparetic 48%
 - Unable to walk 22%
 - Complete/partial dependence 24-53%
 - Aphasic 12-18%
 - Clinically depressed 32%

TIA or Stroke

• True TIA are brief attacks lasting a few minutes-hours
• Longer attacks up to 24 hours with resolution of clinical symptoms are often ischemic stroke
• MRI demonstrates abnormalities in 50-70% cases

Event Risk Within 3 Months After TIA

Independent risk factors for stroke within 90 days after TIA:
- Age > 60 years
- Diabetes mellitus
- Duration of episode greater than 10 min
- Weakness
- Language impairment with the episode

Early Treatment of TIA Reduces Risk of Stroke

- Oxfordshire Study
- Phase I
 - 310 patients referred to stroke clinics with initial treatment plan initiated on return
- Phase II
 - 289 patients direct access to stroke clinics and treatment initiated on day 1
- Stroke at 90 days was reduced by 80% with early treatment
- ARR at 90 days 10.3-2.1= 8.2%

What is an Acute Ischemic Stroke?
Diffusion-Perfusion Mismatch

- rCBF
- TTP
- DWI
Hemodynamics—Acute Period

• Normal CO2 vasodilatory response may disappear
• Impaired autoregulation
• Reductions in CPP (even in normal range) can produce reduced CBF
• Cerebral steal (decreased CBF in ischemic area b/c of vasodilation elsewhere)
• Inverse steal
• These changes may persist for several weeks or more

Ischemic Penumbra:
Hypoperfused Area of Focal Ischemia That May Be Salvaged by Timely Intervention

The Penumbra and Imaging

• Perfusion Weighted MRI correlates with but may often overestimate the size of the penumbra
• May be inaccurate data—many studies assessed final infarct volume on day 7
 – Infarct may shrink between days 1 and 7
BP is a Double-Edged Sword

- High BP maintains perfusion to organs in times of stress
- Low BP may help to guard against bleeding out

BP is a Double-edged Sword

- High BP is long-term risk factor for vascular disease
- High BP predisposes for ICH and may expand hematomas
- Hypertensive encephalopathy
- Low BP at risk of syncope
- Extreme low BP → watershed infarcts
- Low BP in AIS may produce poor flow, worsening stroke
Blood Flow Dynamics and Brain Ischemia

- Cerebral blood volume (CBV)
 - 80-85% venular
 - 10-15% arterial
 - The most responsive portion to CPP changes
 - 5% capillary

Cerebral Perfusion Pressure

CPP = MAP - ICP
Cerebral Autoregulation

- Compensatory mechanism to maintain cerebral blood flow (CBF)
- Adjusts for CPP of 70-150
- Mediated by changes in CVR
 - When CPP decreases, vasodilation of small arteries, arterioles ensues
 - A 10% decrease in MAP produces only 2-7% drop in CBF

![Cerebral Autoregulation Diagram](image-url)
Oxygen Extraction

- If MAP drops below threshold, O2 extraction fraction (OEF) increases to compensate
 - Normally, only 30-40% of O2 to brain is used for energy production
 - After this reserve is exhausted, cellular damage results

Cerebral Autoregulation Factors

Adapted with permission from Varon J and Marik PE. Chest. 2000;118:214-227.
Blood Pressure in Ischemic Stroke

Acute elevations of BP are common in stroke
- Seen in 85% of patients
- Often declines spontaneously in first 24-48 hours

Cerebral autoregulation is defective in most stroke patients

Acutely lowering BP can expand area of ischemia
- Supported by PET studies
- Supported by clinical experience
- Supported by ASA guidelines

Ischemic Stroke

- Cerebral autoregulation may be lost
- Chronic hypertensive patients are accustomed to higher BP—curve shifted to the right
- Patients may have concomitant cardiac disease
- Hypertension may resolve spontaneously
 - May be important to maintain adequate perfusion pressures
 - Usually not treated unless
 - SBP >220, DBP >120 or MAP >130 mmHg
 - Or concomitant medical conditions—acute MI, aortic dissection, hypertensive encephalopathy, severe LV failure
 - Or if thrombolytic Rx to avoid hemorrhage

Predicting Tissue Viability

• Would have enormous value in making treatment decisions
• Areas of increased OEF may represent the penumbra
 – Increased OEF implies reduced blood supply relative to O2 demand but with metabolically active cells
 – Data that reperfusion within 1 hour improves CMRO2
• Determination of thresholds for CBF and CMRO2 below which tissue is likely to die
 – Suffers from many technical problems

CT perfusion

Mean transit time (MTT) Blood volume (BV)
Acute Stroke Treatment

- **Acute treatment**
 - Thrombolysis
 - IV/IA/TPA/ others
 - Mechanical Clot Disruption
 - Anticoagulation, antiplatelet agents
 - Neuroprotection
 - Hypothermia

- **Secondary prevention**
 - Risk factors modification
 - Medical vs. surgical interventions

Scenario #1

- 68 yo man, h/o hypertension
- 2 hrs right sided weakness (face=arm>leg), Broca’s aphasia
- BP 190/88, INR 1.0, normal labs o/w
- NIHSS=12
Scenario #1

- 68 yo man, h/o hypertension
- 2 hrs right sided weakness (face=arm>leg), Broca’s aphasia
- BP 190/88, INR 1.0, normal labs o/w
- NIHSS=12

Stroke Unit: The Ideal

- Acute stroke patients should be admitted to a stroke unit
- Tools in a stroke unit
 - Telemetry
 - Care maps
 - Experienced nurses
 - Prevent aspiration pneumonia, DVT, infection
 - Multidisciplinary team
- All TIA patients admitted if they present within 48 hours or have multiple TIAs
Key Elements of a Primary Stroke Center

- Director
- Stroke team 24/7
- Stroke unit
- Care maps
- Rapid CT and lab testing
- Neurosurgery within 2 hours
- Track outcomes
- Education – public and private
Stroke Unit Care

- Meta-analysis of 23 trials comparing organized stroke unit care with general ward care

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Odds ratio</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (1 year)</td>
<td>0.86</td>
<td>.005</td>
</tr>
<tr>
<td>Death or institutionalized care</td>
<td>0.8</td>
<td>.0002</td>
</tr>
<tr>
<td>Death or dependency</td>
<td>0.78</td>
<td>.0003</td>
</tr>
</tbody>
</table>

- No increase in length of stay
- Conclusion: Stroke unit care associated with lower odds of death or dependency

Overall Benefits and Risks of IV tPA for Stroke

- Benefit: neurologically normal at 3 months
 - 55% relative increase
 - 12% absolute increase
- Very robust effect: NNT = 8
- Risk of symptomatic ICH was 6.4%
- The overall benefits include the ICHs
- Risk of ICH can be reduced by closely following the tPA protocol

Efficacy of tPA by Stroke Subtype

- Small vessel
- Large vessel
- Cardioembolic

% with good outcome

Time Is Brain: Effects of tPA vs. Time

- Odds ratio for favorable outcome at 3 months
- Minutes from stroke onset to start of treatment
- Benefit for rt-PA
- No benefit for rt-PA
- Benefit for rt-PA
- No benefit for rt-PA
Prospective Studies

- Patients with little or no response to rtPA at 24 hours had poor recovery at 3 months
- Results of the German Stroke Registry Study Group that followed 1796 patients treated with rt-PA at 225 hospitals between 2000-2002
- Hueschmann PU JAMA, Oct:2004

Studies to Extend IV t-PA Beyond 3-Hour Time Window

Efficacy Analyses

- ECASS II: 0- to 6-hour time window; primary outcome modified Rankin 0 to 1
- ATLANTIS: 3- to 5-hour time window; primary outcome Barthel of 95 to 100
- Both studies prospective, randomized, double-blinded

© National Stroke Association
Using tPA in Routine Clinical Practice

• Overall only about 3%-4% of stroke patients receive tPA—mostly due to time delays
• Efficacy similar to NINDS trial
• Rate of ICH: 4%-6%
• Risk of ICH increases with protocol violations
 – Time >3 hours
 – Poor blood pressure control
 – Using prohibited agents
 – Wrong dose
 • 0.9 mg/kg
 • Maximum dose: 90 mg
 – Elevated blood sugar also increases risk

Results of Anticoagulation: Meta-analysis

• No significant difference in 2-week mortality (8.5% in AC group vs. 8.7% in controls)
• Total new strokes identical between 2 treatment groups: 4.1%
• No evidence of heterogeneity among various studies or agents

Anticoagulation for Acute Ischemic Stroke

- Urgent *routine* anticoagulation with goal of improving neurologic outcome or preventing early recurrence not recommended
- More study is required before recommendation can be made regarding immediate anticoagulation in specific patient groups
 - Large-vessel atherothrombosis
 - High risk of recurrent embolism
- Not recommended for moderate or severe stroke
 - High risk of intracranial bleeding
- Contraindicated within 24 hours of tPA

Scenario #2

- 60 yo woman, h/o Afib
- 4 hrs right sided weakness (face=arm>leg), global aphasia
- BP 100/52, INR 1.0, normal labs o/w
- NIHSS=16
Intra-arterial Thrombolysis
PROACT-11

• Prourokinase
• Intraarterial: 9mg r-proUK
• 0-6 hrs
• Angiographic MCA occlusion

PROACT-11: RESULTS

• Bleeding rate and recanalization

<table>
<thead>
<tr>
<th>outcome</th>
<th>recan</th>
<th>mortality</th>
<th>bleed</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>66%</td>
<td>27%</td>
<td>10% with</td>
</tr>
<tr>
<td>25%</td>
<td>18%</td>
<td>25%</td>
<td>10% without</td>
</tr>
</tbody>
</table>
Intraarterial Thrombolysis

- ICA occlusion
- MCA main Stem occlusion
- Basilar Artery Occlusion
- Thrombolysis beyond 3 hours

Should Every Ischemic Stroke Seen Within 3 hours be Thrombolysed?

- Not a benign therapy
- Completed stroke stand to gain very limited benefit
- It would be useful to define possible salvageable tissue before attempting thrombolysis
t-PA Protocol

Emergency Department:
- Reconfirm time of onset
- Obtain written consent
- Page neurology resident and neurology attending
- Alert CT for immediate scan
- Page neuroradiologist on call
- Start labs: PT, PTT, INR, Platelets, Blood Glucose
- EKG
- Racial Hemocult

Exclusion Criteria:
- Central hemorhage
- Intracranial hemorhage
- Subarachnoid/thoracic hemorrhage
- Recent CVA < 3 months
- Recent SAH
- Recent AVM
- Recent SCA
- Recent WMC
- Recent intracranial hemorrhage
- NIHSS Scale > 22 (see attached)
- Lacunar syndrome
- Rapid improvement
- Insular ribbon sign or loss of basal ganglia definition
- PTT > 15
- PT > 15
- Palatostis < 100,000
- Blood glucose > 400 or < 50
- EKG (recent MI)
- Inclusion criteria met
- Consent form signed
- Administer t-PA
- AM/PM

NIH Stroke Scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Level of Consciousness</td>
</tr>
<tr>
<td>2.</td>
<td>LOC Questions</td>
</tr>
<tr>
<td>3.</td>
<td>LOC Commands</td>
</tr>
<tr>
<td>4.</td>
<td>Best Horizontal Gaze</td>
</tr>
<tr>
<td>5.</td>
<td>Visual Fields</td>
</tr>
<tr>
<td>6.</td>
<td>Facial Palsy</td>
</tr>
<tr>
<td>7.</td>
<td>Motor: Right Arm</td>
</tr>
<tr>
<td>8.</td>
<td>Motor: Left Arm</td>
</tr>
<tr>
<td>9.</td>
<td>Motor: Right Leg</td>
</tr>
<tr>
<td>10.</td>
<td>Motor: Left Leg</td>
</tr>
<tr>
<td>11.</td>
<td>Limb Ataxia</td>
</tr>
<tr>
<td>12.</td>
<td>Sensation</td>
</tr>
<tr>
<td>13.</td>
<td>Best Language</td>
</tr>
<tr>
<td>14.</td>
<td>Dysarthria</td>
</tr>
<tr>
<td>15.</td>
<td>Extinction & Inattention</td>
</tr>
<tr>
<td>TOTAL SCORE</td>
<td></td>
</tr>
</tbody>
</table>
NIHSS: Correlates with Outcome

- 3-6 excellent, regardless of treatment (90%)
- 16-22: 40% excellent outcome
- Lacunar strokes 30% greater chance of an excellent outcome
- High NIHSS >23 associated with increased chances of hemorrhage
- Intracranial hemorrhage carries a > 50% mortality

Blood Pressure Management

- **If rt-PA is an option**
 S<185mm, D <105

- **If rt-PA is not an option**
 Avoid lowering the blood pressure unless
 1. S> 220 D> 120
 2. MAP> 130
 3. Signs of CHF or Renal Failure
Hyperglycemia & Hyperthermia

- Control of blood glucose and elevated temperature improve outcome and reduce infarct size
- Controlled hypothermia may reduce mortality but better devices are required to reduce complications
Hyperthermia

- Large Metananalysis
- 9 studies, 3,790 patients
- Power to detect 9% increase in mortality in pyrexial group (37.4-38) was 99%
- Hyperthermia was associated with increased mortality
- OR 1.16 (CI 0.99-1.43 P< 0.00000001)
- Hajat et al: Stroke, 2000; 31: 410

Mechanical Clot Disruption

- Endovascular energy emitting devices
- PT Angioplasty
- Endovascular Thrombectomy
- Merci tested 28 patients/7 US centers
- Median NIHSS 22
- 43% complete recanalization
- 21% more when intraarterial rt-PA added
- Merci2: 150 patients 53.3 recanalization with embolectomy
- SICH 7.8%
- Improved outcome in recanalized patients
IA Reperfusion Therapy

• IA is an option for selected, severe patients < 6 h or < 3 not candidates for IV tPA (Class I; B)
• Treatment requires SC and qualified INR (Class I; C)
• Contraindications for IV tPA (surgery) Class IIa; C)
• Should not preclude IV tPA (Class III; C)
• 68 y/o female with history of peripheral vascular disease, hypertension and atrial fibrillation

• While watching TV with husband, patient began having a left facial droop and left sided weakness. Her husband noticed this and called 911

• Patient presented to ER with left-sided weakness, left facial droop, and no movement of left upper extremity. Neurologic exam also revealed right gaze deviation; the patient could not move her eyes past midline.

• Pre NIHSS = 13

• A non-contrast CT of the brain was obtained on arrival at the ER and it identified a dense right middle cerebral artery sign, without significant loss of gray-matter differentiation an indication that this patient was an interventional candidate

• She was not a candidate for IV tPA because she was on Coumadin for an artificial valve

• Angiography revealed a complete occlusion of the right M1 middle cerebral artery and the distal branches
• Immediately after the procedure, the patient was identified to have increased movement of the left lower and upper extremities
• Patient didn’t qualify for acute rehab and is home doing well
• (outpt therapy)
UK Protocol (one of)

- **0-3 hours**
 - CT +/- CTA +/- Perfusion CT
 - IV rt-PA
 - Contraindications for IV-tpa? IA procedure vs. clinical trials (if eligible)
- **3-8 hours**
 - CT +/- CTA +/- Perfusion CT
 - High suspicion and/or confirmed occlusion? Proceed with IA intervention
 - Consider enrollment in clinical trials
 - For basilar artery, what is there to lose beyond 8 hours?

Treatment in Acute Stages

- Thrombolytics (Intravenous or Intraarterial)
- Minimal interference with BP unless symptomatic or rt-PA
- Temperature control
 - Maintain normal temperature
- Aggressive control of hyperglycemia
- Anticoagulation
 - Heparin only for DVT prophylaxis
 - No proven use for full dose IV heparin
- Antiplatelet agents may reduce recurrence
Conclusions

• Intravenous Rt-PA is effective in reducing stroke morbidity in the right patient within 3 hours
• Intra-arterial rt-PA (not FDA approved) might be better for ICA or MI MCA occlusions, basilar occlusions
• MERCI device for clot disruption may be used with/without IA-rt-PA
• Multimodal therapy is an option
• Newer medications and devices may further improve stroke outcome
 – We are investigating these