Pulmonary Hypertension: Etiology and Clinical Presentation
Therapy 2017

Disclosures: None

Pulmonary Arterial Hypertension: Clinicopathologic Definition

• Hemodynamic definition:
 – mPAP > 25 mm Hg at rest
 – PCWP or LVDP 15 mmHg
 – PVR ≥ 3.0 Wood Units
• Associated with biologic changes:
 – In pulmonary vasculature
 • Vasoconstriction
 • Cellular proliferation and apoptosis
 – In RV function, thickness, and size
Pulmonary Arterioles 70-500 Microns

Updated WHO Classification of Pulmonary Hypertension
2013 Nice World Symposium - J Am Coll Cardiol December 2013

Group 1: Pulmonary arterial hypertension (PAH)
- Idiopathic PAH
- Heritable – BMPR2, ALK1, ENG, SMAD9, CAV1, KCNK3, unknown
- Drugs and toxin-induced
- Associated with:
 - Connective tissue diseases
 - HIV infection
 - Portal hypertension
 - Congenital heart diseases
- Schistosomiasis
- Persistent pulmonary hypertension of the newborn
- 1’ Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatos
WHO Classification, Groups 2-5 PH

- **Group 2**: Pulmonary hypertension due to left heart disease
 (Incidence associated with HF/preserved EF “exploding” - Lindenfeld J, Mayo Clinic)
- **Group 3**: Pulmonary hypertension of lung disease and/or hypoxia
- **Group 4**: Chronic thromboembolic pulmonary hypertension (CTEPH)
- **Group 5**: Pulmonary hypertension with unclear multifactorial mechanisms
 Hemolytic anemia
 Sarcoidosis
 Chronic renal failure

Symptoms and Physical Exam

- Dyspnea
- Syncope, seizures
- Dizziness
- Fatigue
- Edema
- Chest discomfort
- Late presentation: it’s anything but I’m sick, maybe deep-seated anxiety
- Loud P2, SEM
- Elevation of the venous pressure
- TR, high-pressure PI
- Palpable right ventricular impulse
- Parasternal S3 gallop
- Hepatomegaly
- Ascites
- Lower extremity edema
Electrocardiogram

Chest X-Ray
Echo – Parasternal Short Axis

- Assess RV size and contraction
- Estimate PA systolic pressure
- Assess RV pressure-volume overload

WHO Functional Classification
Modified NYHA HF Classification

- Class I: Ordinary physical activity does not cause undue dyspnea or fatigue, chest pain, or near syncope
- Class II: Slight limitation of physical activity. Comfortable at rest. Ordinary physical activity causes undue dyspnea or fatigue, chest pain, or near syncope
- Class III: Marked limitation of physical activity. Comfortable at rest. Less than ordinary physical activity causes symptoms
- Class IV: Inability to carry out physical activity without symptoms. Manifest signs of right heart failure. Symptoms may be present at rest.

WHO 1998 (http://who.int/ncd/cvd/pph.html)
Chronic Thromboembolic Pulmonary Hypertension (CTEPH): WHO Group PH

- About 20-30 CTEPH centers worldwide
- UCSD the largest experience
 - 2000+ cases operated
- Treatment of choice:
 - Hypothermic arrest (18°C)
 - Embolectomy
- Significance
 - High index of suspicion
 - Value PA angiography
 - Seek cause for venous thrombosis

Major Factors in the Development of PAH

- Rare variant (mutation) in a major PAH susceptibility gene (e.g., BMPR2)
- Common Variants (e.g., CBLN2 gene)
- Epigenetics
- Somatic lung tissue variation
- Wild type BMPR2 activity

- Austin and Lloyd, Circ Research 2014
Group 1 PAH Conundrum

- In only 10% of PAH patients does reversal of vasoconstriction result in clinically meaningful reduction in pulmonary vascular resistance.
- In remainder, proliferative arteriopathy the driver of elevated pulmonary pressures.
- Available drugs to date do not significantly impact proliferative arteriopathy.

A PH-Wide Conundrum

- Emerging Omics research demonstrates significant phenotypic and genotypic overlap in the different WHO Groups.
- Effective treatment of PH may require a more “precise” definition of what is being treated.
Bone Morphogenetic Protein Receptor Pathway: Normally Inhibitory, Becomes Proliferative

Metabolic Hypothesis in PAH
The Role Mitochondria in Pulmonary Vascular Remodeling

- “Warburg Effect”
- Erzurum et al., Am J Path 2010
- PDK induced by PAH state
- PDH inactivated by PDK
- Decreased pyruvate influx, hyperpolarized Δ membrane potential
- Reduced mitochondrial Kreb’s cycle activity and mROS production close mitochondrial transition pore (MTP)
- Suppression of apoptosis, enhancement of cell proliferation
- Disordered mitochondrial O₂-sensing signals hypoxia in absence of hypoxemia

- Michelakis ED et al., Mol Med 2010

Incidence of Idiopathic Pulmonary Hypertension (IPAH)

- Sporadic and heritable (formerly primary)
 - Approximately 1-10 per million
 - Females 1.7/1
- Other Group 1 etiologies
 - Also rare per 100,000 underlying diagnoses

Survival in Idiopathic Pulmonary Arterial Hypertension: The REVEAL Registry

- Median survival from diagnosis 2.8 years untreated
- Highly dependent upon right ventricular function
- One year or less in the presence of RV failure

PAH in Scleroderma Systemic Sclerosis (SSc): Facts

- The worst of PAH: 4 times more likely to die than IPAH patients
- 240 cases/million in U.S.
- 10-15% of SSc patients
- 1.5-1.7% family history
- Older population compared to IPAH
- Predominantly female
- Responsible for 18-28% of SSc deaths (pulmonary fibrosis 42% of SSc deaths)

PAH Diagnosis

- Suspect on clinical grounds
- Right heart catheterization: THE SINE QUA NON for the diagnosis of PAH
- Right internal jugular approach
- U/S guidance - warfarin cessation not necessary
- Meticulous attention to accuracy of PCWP
 - Distinguish primary from secondary etiology
Warfarin and Survival: REVEAL Registry
Kaplan-Meier estimates at 36 Months

- Preston IR, Roberts KE, Farber et al. Circulation 2015

Anticoagulation in COMPERA: European Registry

Continuous Intravenous Epoprostenol versus Conventional Therapy

- 12-week prospective randomized trial
- Epoprostenol vs. conventional therapy
- 81 patients, PA 60 mm Hg, WHO III-IV
- Mean max. dose 9.5 + 0.5 ng/kg/min
- Approximate 2% reduction in mPAP
- Improved 6-minute walk & WHO Class
- Improved survival

AMBITION Trial/Ambrisenan+Tadalafil: Probability of a First Adjudicated Primary End-Point Event

FDA-Approved Drug Timeline

Epoprostenol
Bosentan
Parenteral Treprostinil
Inhaled Iloprost
Sildenafil
Ambrisentan
Inhaled Treprostinil
Tadalafil
Riociguat
Oral Treprostinil
Selexipag
Ambrisentan + tadalafil

PAH Treatment Algorithm

± Anticoagulation ± Diuretics ± Oxygen ± Digoxin

Acute Vasoreactivity Testing

Positive

Lower Risk

ERAs and/or PDE-5 Inh or Guanylate cyclase agonist Inhaled or oral prostanoid or oral prostanoid-acting molecule

Investigational protocols

Higher Risk

Lower Risk Therapies + Parenteral Prostanoid (sc treprostinil or iv epoprostenol or treprostinil)

Atrial septostomy
Lung transplantation

Negative

Oral CCB
Sustained Response
Continue CCB
Pulmonary Veno-Occlusive Disease and Pulmonary Capillary Hemangiomatosis

- Virtually clinical diagnoses
- Mediastinal lymphadenopathy
- Pulmonary osteoarthropathy
- Deterioration/death in response to epoprostenol
- The PCWP is usually normal

Acutely Decompensating PH: Treatment

- Oxygen
- Phenylephrine – raise arterial pressure, improve coronary perfusion pressure
- Inotropic support: probably dobutamine
- Diuretics
- Inhaled nitric oxide
- Initiation of prostacyclin - be careful of hypotension
- Intubation: uniformly associated with mortality
Lung, Heart/Lung Transplantation

- Symptomatic progressive disease despite optimal treatment
- Bridging strategies: ECMO
- Optimal prostacyclin dosing: the presence of side effects
- Hemodynamic parameters:
 - CI < 2 L/min/m²
 - RA mean > 18 mm Hg
- Echo evidence of RV failure

Adult Lung Transplants Kaplan-Meier Survival by Diagnosis Conditional on Survival to 1 Year
(Transplants: January 1990 – June 2014)

No pair-wise comparisons were significant at p < 0.05 except all comparisons with LAM/tuberous sclerosis.
Conclusions

• Untreated, Group 1 PAH a deadly disease
• With WHO Group 1 PAH therapy, significant survival benefit (idiopathic PAH better than other sub-types)
• CTEPH: Pulmonary endarterectomy under deep hypothermic arrest
• Patients better managed by the PH specialist